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Motivation
• Solving equations of motion for compact binary inspirals is important but has 

challenges

– Must be achieved using numerical methods, which is a bottleneck for gravitational wave data 

analysis applications

– Important phase errors over many thousands of orbits (e.g., in LIGO’s bandwidth) can be 

caused by inaccurately capturing the effects of very weak nonconservative forces

– Often can involve using high-order adaptive solvers to provide sufficiently accurate numerical 

solutions over a very large number of orbits

– Perturbative solutions exhibit secular behavior making result invalid over short times

– At least one of these issues are often encountered in solving other types of nonconservative

equations of motion

• Most analytical methods for gravitational wave source problems are based on orbit-

averaging/adiabatic approximations

– Advantages:

• Simpler equations to solve

• Often provides useful qualitative understanding of the system’s physical tendencies

– Disadvantages:

• Ambiguity about timescale to use for averaging: Period is associated with mean, eccentric, or true 

anomalies? [see Pound & Poisson (2008)]

• Not a systematic procedure

• What are the errors of the resulting approximate solutions?

• Lose real-time phase information

• Tend to be less useful as a system becomes more complicated (e.g., precession)

[see Chatziioannou et al (2016) for recent progress]
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Dynamical Renormalization Group

• Background:

– Introduced as a method for solving ODE’s by Chen, Goldenfeld, and Oono (1996)

– Based on Renormalization Group Theory from high-energy and condensed matter physics

– Encapsulates several other asymptotic methods of global analysis including: 

• Multiple-scale analysis

• WKB theory

• Boundary layer theory

– Based on naive perturbation theory

– Systematic

• Provides a turn-the-crank method of finding globally valid approximate solutions

• Provides a formal error estimate on the perturbative solution

• Contains strong self-consistency checks of the calculation

• Basic idea
– Time at which to build a perturbative solution is arbitrary

– Perturbative solutions (at fixed order) at different times 

have the same form but different initial data parameters

– These solutions are related to each other by

“renormalization group flows” from one initial

data set to another.

– What gets renormalized? Initial data parameters.
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Overview

Exact solution,

which may not 

be known

Perturbative solutions have same 

form at different “initial” times and

are related by their “initial” data
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The algorithm

Dynamical Renormalization Group

• Write down the equations of motion

• Write down a background solution around which to perturb 

– This solution is written in terms of “bare” parameters (i.e., RB(t0)), which implicitly depend upon the initial time 

t0, away from which we flow. 

• Use this background to calculate perturbatively the solution to equations of motion.

– The perturbation will in general have secular “divergences" (i.e., terms that grow as (t-t0)).

• Take this solution and write the bare parameters as renormalized parameters (i.e., RR(𝜏)) plus

“counter-terms”.

– Counter-terms will be proportional to (𝜏-t0)
p and are chosen to 

eliminate the t0 dependence of the aforementioned solution. 

– 𝜏 is known as the “subtraction point” or “renormalization scale.”

– This step yields the “renormalized” perturbative solution.

– Renormalized solution must be independent of the choice of 𝜏.

– The solutions’ explicit dependence on 𝜏 is cancelled by the 

implicit dependence of the renormalized parameters on 𝜏.

– Use this fact to derive a first-order differential equation (called the 

“renormalization group (RG) equation”) for the renormalized parameter. 

– The right-hand side of the RG equation is the “beta (β) function.”

• Solve the RG equations and set 𝜏 = t, the observation time.

– All of the secularly growing terms are resummed at this order in perturbation theory. 
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Binary inspirals at leading post-Newtonian order

• 0PN equations of motion in polar coordinates (motion occurs in a plane for all time)

• Radiation reaction from gravitational wave emission causes orbit to depart from a 

background orbit

– For definiteness, consider a background circular orbit with a Keplerian angular frequency

– Perturbed orbit is described by:

• Expand equations of motion to first order in perturbations off of background orbit
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Equations of motion
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• General solution is parameterized by four numbers (the bare parameters, “B”)

• Can shift some bare parameters to remove non-secular sinusoids using trig identities

• This results in the following general perturbed solution:

• Two types of perturbations off of background orbit

– Secular terms (grow linearly with time and eventually invalidate the perturbative solution)

– Non-secular terms (bounded in time)
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General solution

(expansion parameter for DRG)
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• Renormalize the initial data parameters

– Parameters depend implicitly on initial time

– Write a bare (“B”) parameter as a 

renormalized (“R”) parameter plus a 

“counter-term”

– Use counter-terms to absorb secular divergences

• Write perturbative solutions in terms of renormalized parameters

– Drop higher order terms in 𝜖 for consistency
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Renormalization

(A is already O(𝜖))

Counter-terms
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• Introduce the subtraction point/renormalization scale 𝜏 through t-t0 = (t-𝜏)+(𝜏-t0)

• Choose counter-terms to remove (𝜏-t0) dependencies

• Counter-terms through O(𝜖) are:
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Renormalization Group equations

• Recall:  bare parameter = renormalized parameter + counter-term

• Note that the bare parameters are independent of 𝜏

– Differentiate the bare parameters with respect to 𝜏 and set the result to zero.

– Solve for the derivative of the renormalized parameter.

– Secular pieces automatically cancel if the solution is renormalizable

• Otherwise, secular divergences remain in renormalized parameters, which are supposed to be finite

• This is a self-consistency check intrinsic to the DRG method
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• Solve the RG equations to describe the “flow” from 𝜏 = ti to 𝜏 = t

– Analytically, if possible

– Numerically, otherwise (coupled first-order differential equations)

• Substitute the RG solutions into the perturbative solutions and evaluate at 𝜏 = t
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• In analogy with quantum field theory calculations, first-order perturbative calculation is 

sometimes referred to as a “1-loop” calculation

• Solutions to RG equations resum secular divergences order-by-order in 𝜖

– Third term is a secular divergence that appears at 2nd order but is already captured at first order by the 

resummation performed by DRG!

• Error estimates are naturally provided during the calculation

• DRG identifies (1-loop) invariants along the RG trajectory

• Terms involving (t-𝜏)(𝜏-t0) must be cancelled by pieces generated from counter-terms

– Provides another self-consistency check of the calculation

– Removal of such cross terms is important for the renormalizability of the perturbative solution
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Comments
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DRG to second order in 𝜖:  The 2-loop calculation

• Use same equations of motion but expanded to 2nd order in the perturbations.

• Find general solution to the 2nd order equations

• Shift bare parameters (i.e., initial data) to absorb redundant, finite pieces

– These shifts have some freedom parameterized by µ.

– Easiest to choose a “renormalization scheme” so as to keep the resulting 2-loop RG 

equations as simple as possible, which is equivalent to choosing µ to remove all the finite, 

t-dependent pieces in the expression for the 2nd order angular frequency solution.

• Renormalize initial data parameters to remove secular divergences. 

– For example:

– Yields the counter-terms for R and A through 2-loops

– Importantly, cross terms involving (t-𝜏)p(𝜏-t0)
q automatically cancel with other terms containing 

lower-order counter-terms (self-consistency).
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• At the end of the day, the counter-terms through 2-loops are

• RG equations for initial data parameters are

– A large number of cancellations happen to prevent secular terms from remaining in the RG 

equations (self-consistency)

– RG equations and solutions for all renormalized quantities (except A) are same as at 1-loop
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• Solution for AR (= eRRR where eR is the orbit’s small eccentricity) is

– Power of 19/12 accounts for the circularization of a compact binary inspiral

– Matches the well-known expression of Peters (1964) in the limit of small orbital eccentricity.

• RG invariants are same as at 1-loop except for a 2-loop modification to AR invariant:

• Full, resummed perturbative solution through 2nd order is:
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Binary inspirals at first post-Newtonian order

• Include 1PN radiation reaction force but 0PN potential (for demonstration)

• Following the same steps as for 0PN order, the 1-loop RG equations are

• Analytical solutions can be found when integrating these RG equations
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(same as 0PN)
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Summary

• The Dynamical Renormalization Group method:

– Is a systematic, turn-the-crank way to solve differential equations

– Provides formal error estimates on the resulting globally valid approximate solutions

– Generates perturbatively invariant quantities along a RG flow

– Has built-in checks for self-consistency that can be used to verify correctness of the 

calculation

– Subsumes other well-known global approximation methods including:

• WKB

• Multiple scale analysis

• Boundary layer theory

• We’ve applied DRG to several problems, at varying levels of completion:

– Damped harmonic oscillator (useful test ground for understanding the method in detail)

– Nonspinning 0PN compact binary inspirals

– Nonspinning 1PN compact binary inspirals (nearly complete)

– Tidal dissipation of spinning, extended bodies in a binary (in progress)

– Poynting-Robertson effect on motion of dust irradiated by a star (nearly complete)

– Scalar self-force inspirals in a weak gravitational field
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Future work (1)

• Apply DRG to precessing compact binary inspirals and other spinning systems

– Can analytic solutions to the RG equations be found?

– Provide a formal error estimate for the validity of the resummed perturbative solutions

• Do the RG invariants have symmetries associated with them?

– Is there a “Noether’s Theorem” that relates continuous symmetry transformations to these 

quantities conserved throughout the RG flow (e.g., inspirals)?

– Equal-mass and equal-spin-magnitude compact binary inspirals possess an inspiral-invariant 

quantity found empirically in Galley et al (2010):  Is it derivable using DRG? Is there a similar 

expression more generally applicable?

• Can DRG be combined with numerical solutions of backgrounds?

– If so, could be useful for resumming secular divergences encountered in numerical 

simulations of binary black holes for theories with corrections to general relativity

[see Okounkova et al (2017)]

– Could also be useful for calculating gravitational self-force inspirals

[see Gralla & Wald (2008), Warburton et al (2012), Osburn et al (2016)]
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Future work (2)

• Could DRG handle transient (orbital) resonances since averaging methods are not 

used? [e.g., see Flanagan & Hinderer (2012) for the breakdown of averaging]

• Other interesting possible applications include:

– Exoplanet orbital evolutions

– Binary inspirals/outspirals of not-so-compact bodies (e.g., mass-transferring stellar bodies)

– Orbital mechanics of satellites
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